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Abstract
The flow in and around a fracture modelled as a two-dimensional permeable lens
immersed in an infinite porous medium of different permeability is analytically
solved by means of conformal mapping and Fourier transform. When the lens
is more permeable than the surrounding medium, singularities occur at angular
points for flow parallel to the lens, while velocities vanish at these points for flow
perpendicular to the lens. In the opposite case, when the lens is less permeable
than the surrounding medium, singularities are exchanged and flows parallel
and perpendicular to the lens are regular and singular, respectively. Predictions
are successfully compared with data obtained by a numerical code.

PACS number: 47.55.Mh

1. Introduction

Fractures are of great practical importance since they can drastically influence flows through
porous media with a small permeability [1]. A fracture can be considered as a void space
between two solid surfaces, but very often real fractures are filled with debris; therefore, they
can be themselves considered as porous media where the Darcy law applies.

In the recent years, attention has been mostly focused on the numerical solution of flow
through fracture networks [6] and fractured porous media [2, 3] and very little attention has
been given to analytical solutions. An example of an analytical solution is given by [4] where
the flow in and around a single ellipsoid is calculated.

The main purpose of this paper is to solve the Darcy equations in and around a single
fracture modelled as a two-dimensional lens filled by a porous medium of permeability K ′

i

embedded in an infinite porous medium of permeability K ′
e. These equations will be solved by

the complex potential method which was systematically applied to two-dimensional problems
[7]. Use of conformal mapping reduces the boundary value problems to problems for canonical
domains. The latter problems are usually solved in closed form.
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Figure 1. The two-dimensional permeable lens.

This paper is organized as follows. Section 2 is devoted to a general presentation of the
physical situation and of the Darcy equations to be solved.

The solution by means of conformal mapping and Fourier transform is detailed in
section 3 and in appendix A when the flow at infinity is parallel to the lens. The solution to
a number equation and the representation of the meromorphic function as an infinite sum of
simple fractions are derived in appendix B.

Of special interest is the flow near the angular points of the lens. Similar problems
for corners were discussed by Obnosov [9] and Keller [5] who have constructed only radial
solutions. The singularities of the present flow field are extracted analytically in appendix B
and in section 3.

The solution when the flow at infinity is perpendicular to the lens is briefly addressed in
section 4 where the analytical solutions are compared to numerical determinations of the flow
and pressure fields.

Some concluding remarks end this paper.

2. General

In the complex plane C, consider the domain Di bounded by two arcs �1 and �2 of the two
circles |z′ + ib′| = r ′

0 and |z′ − ib′| = r ′
0, where z′ = x ′ + iy ′, i = √−1 (see figure 1). As a

general rule, primed and unprimed quantities are dimensional and dimensionless, respectively.
Note that flow always takes place in the x ′y ′-plane.

Let De be the complement of D to C ∪ ∞. It is convenient to introduce the points a′ and
−a′ lying on the real axis where the arcs �1 and �2 meet with the angle πα. If a′ and πα are
known, b′ = a′ cot πα

2 , r ′
0 = a′/sin πα

2 . Let the domains Di and De be occupied by media of
permeabilities K ′

i and K ′
e, respectively. The flow velocity v′

β satisfies the Darcy equation

v′
β = −K ′

β

µ′ ∇′p′
β, ∇′ · v′

β = 0, (1)

where the subscript β stands for i or e and where µ′ is the fluid viscosity [1]. The pressure
and normal fluxes are continuous on the surface �1 ∪ �2

p′
i = p′

e, (2)

K ′
in · ∇′p′

i = K ′
en · ∇′p′

e, (3)

where n is the unit normal to �1 ∪ �2.
The flow is generated by a constant pressure gradient ∇′p′ applied at infinity; therefore,

p′
e(x

′) ∼ x′ · ∇′p′, as |x′| → ∞, (4)
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or equivalently

v′
e = −K ′

e

µ′ ∇′p′, as |x′| → ∞. (5)

It is more convenient to work with dimensionless quantities which are denoted by the
same letters as the dimensional quantities, but without any prime. Let us define

K = K ′
i

K ′
e

, x = x′

a′ , p′
β(x) = p′

β

|∇′p′|a′ , vβ = −K ′
β |∇′p′|
µ′ ∇pβ.

The dimensionless fields pβ and vβ verify the dimensionless equations

ve = −∇pe, vi = −K∇pi, ∇ · vβ = 0 (β = i, e) (6)

with the boundary conditions

pi = pe, (7)

Kn · ∇pi = n · ∇pe, on �1 ∪ �2, (8)

pe ∼ x · ∇p, as |x| → ∞. (9)

The dimensionless gradient ∇p has two components p,1∞ and p,2∞. Equation (9) can be
written in terms of the velocity

ve(x, y) = (v1(x, y), v2(x, y)) ∼ −(p,1∞, p,2∞), as x, y → ∞. (10)

The functions pi(x, y) and pe(x, y) are harmonic in the domains Di and De, respectively,
continuously differentiable in the closures of the considered domains, except at the points
z = ±1, where pi(x, y) and pe(x, y) are bounded (here z = x + iy). The velocities vi and ve

are continuous in the closure of the considered domains, except at z = ±1, where they may
have an integrable singularity.

Following [8], the two complex potentials ϕi(z) and ϕe(z) can be introduced

pi(x, y) = 2

K + 1
Re ϕi(z) and pe(x, y) = Re ϕe(z), (11)

where Re stands for the real part. The function ϕi(z) is analytic in Di;ϕe(z) is analytic in De,
except at infinity, where (see (9))

ϕe(z) ∼ (p,1∞ − ip,2∞)z, as z → ∞. (12)

The functions ϕi(z) and ϕe(z) satisfy the R-linear problem [8]

ϕe(t) = ϕi(t) − ρϕi(t), t ∈ �1 ∪ �2, (13)

where ρ has the form

ρ = K − 1

K + 1
. (14)

In order to simplify calculations, it is convenient to decompose the problem. In the
first problem, the pressure gradient is parallel to the x-axis. Therefore, ϕi(z) and ϕe(z) are
symmetric with respect to the x-axis

ϕi(z) = ϕi(z), ϕe(z) = ϕe(z) (15)

and

ϕe(z) ∼ z, as z → ∞. (16)

In the second problem, ∇p is parallel to the y-axis. Therefore, the corresponding complex
potentials ϕ∗

i (z) and ϕ∗
e (z) satisfy the relations

ϕ∗
i (z) = −ϕ∗

i (z), ϕ∗
e (z) = −ϕ∗

e (z) (17)

and

ϕ∗
e (z) ∼ −iz, as z → ∞. (18)
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Figure 2. The image of the physical plane under the conformal mapping.

3. Flow parallel to the lens

The R-linear problem (13) is solved in two steps. First, we use a conformal mapping and
obtain a problem in a strip. Second, the Fourier transform is applied to solve the latter problem
in closed form. Here, the symmetric case (15)–(16) is considered where the flow is in the
xy-plane and ∇p parallel to the x-axis.

3.1. Conformal mapping

The conformal mapping

w = ln
z + 1

z − 1
+ π i (19)

transforms the upper half-plane H onto the horizontal strip 0 < η < π , where w = ξ + iη;
moreover, Di ∩ H is transformed onto 0 < η < πα

2 , and De ∩ H onto πα
2 < η < π . The

inverse conformal mapping has the form

z = ew − 1

ew + 1
. (20)

The corresponding domains are illustrated in figure 2.
Introduce the functions

	(w) = ϕi

(
ew − 1

ew + 1

)
, 	e(w) = ϕe

(
ew − 1

ew + 1

)
. (21)

They are analytic in the strips 0 < η < πα
2 and πα

2 < η < π , respectively. The point z = ∞
transforms to the point w = π i under (19). This implies that (16) is replaced by

	e(w) ∼ ew − 1

ew + 1
∼ 2

w − π i
, as w → π i, (22)

i.e., 	e(w) has a simple pole at w = π i with the residue 2. Hence, we can represent 	e(w)

in the form

	e(w) = 
(w) +
2

w − π i
. (23)

The functions 	(w) and 
(w) are analytic in 0 < η < πα
2 and πα

2 < η < π , respectively.
They are continuously differentiable in the closures of the considered domains except at the
points w = ±∞, where they are bounded. Taking into account (21) and (23), (13) implies
that


(w) = 	(w) − ρ	(w) − 2

w − π i
, w = ξ + i

πα

2
. (24)
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The symmetry conditions (15) on the real axis yield the conditions

Im 
(w) = 0, w = ξ + π i, (25)

Im 	(w) = 0, w = ξ, (26)

where Im stands for the imaginary part. Consider now the boundary value problem (24)–
(26) with respect to functions 	(w) and 
(w) analytic in 0 < η < πα

2 and πα
2 < η < π ,

respectively, and continuous in the closures of the considered strips. Moreover, 	(w) and

(w) are bounded at infinity, i.e., when ξ → ±∞, 0 � η � π where w = ξ + iη.

3.2. Fourier transform

The boundary value problem (24)–(26) is solved by applying the Fourier transform. Represent
	(w) and 
(w) via real harmonic functions

	(w) = u1(ξ, η) + iv1(ξ, η), 
(w) = u2(ξ, η) + iv2(ξ, η). (27)

Following [8], the problem (24)–(26) is rewritten as

u2

(
ξ,

πα

2

)
= (1 − ρ)u1

(
ξ,

πα

2

)
− 2ξ

ξ 2 + π2
(
1 − α

2

)2 , (28)

∂u2

∂η

(
ξ,

πα

2

)
= (1 + ρ)

∂u1

∂η

(
ξ,

πα

2

)
− 4π

(
1 − α

2

)
ξ(

ξ 2 + π2
(
1 − α

2

)2)2 , (29)

∂u1

∂η
(ξ, 0) = 0, (30)

∂u2

∂η
(ξ, π) = 0. (31)

Here, we differentiate the imaginary part of (24) with respect to ξ

∂v2

∂ξ

(
ξ,

πα

2

)
= (1 + ρ)

∂v1

∂ξ

(
ξ,

πα

2

)
− ∂

∂ξ

(
2π

(
1 − α

2

)
ξ 2 + π2

(
1 − α

2

)2

)
(32)

and apply the Cauchy–Riemann equation ∂v2
∂ξ

= − ∂u2
∂η

. Then, (32) yields (29). The auxiliary
problem (28)–(31) is solved in appendix A. Its solution is given by the integrals (A.19) and
(A.20).

In order to present the final formulae for pressure and seepage velocity, relation (19)
between w = ξ + iη and z = x + iy is rewritten in the real form

ξ = 1

2
ln

(x + 1)2 + y2

(x − 1)2 + y2
, (33)

tan η = 2y

1 − x2 − y2
. (34)

For instance, for positive x and y from Di , (34) yields η = arctan 2y

1−x2−y2 . The pressure has
the form

pi(x, y) = 2

K + 1
u1(ξ, η), (x, y) ∈ Di,

pe(x, y) = u2(ξ, η) +
2ξ

ξ 2 + (π − η)2
, (x, y) ∈ De,

(35)
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where ξ and η are given by (33) and (34), respectively; u1(ξ, η) and u2(ξ, η) are calculated
by (A.19) and (A.20), respectively. The seepage velocity is deduced from the pressure via
formula (6).

It follows from (19) that z = x + iy tends to infinity if and only if w tends to π i,
or equivalently ξ → 0, η → π . We have from (A.20) that u2(0, π) = 0. The term

2ξ

ξ 2+(π−η)2 = Re 2
w−π i from (35) has the required asymptotic as z = x + iy tends to infinity,

since

Re
2

w − π i
= Re

2

ln z+1
z−1

= x + 0(1)

(compare (16)).
Note that the pressure is defined within an arbitrary additive constant. However, this

constant was implicitly fixed in the transformation of the problem (24)–(26) to the problem
(A.2)–(A.5). If we keep this arbitrary constant, a generalized δ-function arises as a result of
the Fourier transformation of the constant.

3.3. Asymptotic near the angular points

This problem has already attracted some attention in different contexts. Obnosov [9]
constructed radial solutions for two media of permeabilities Ke and Ki which occupy the
angular domains |θ | > πα and |θ | < πα, respectively (α < 1), in the polar coordinates (r, θ).
The complex velocities Ve and Vi were obtained in the form

Ve(z) = Azη−1, Vi(z) = Bzη−1, (36)

where A and B are some constants, and z = r eiθ is a complex coordinate. Here, the real number
η satisfies equation (B.1). A similar problem was discussed by Keller [5] who calculated the
conductance between two highly conducting parallelograms that meet at a corner of angle πα.
This corresponds to the Darcy flow in the case Ki � Ke. Keller [5] derived the pressure as
p(r, θ) = Crη cos(πηθ) where η satisfies

tan
πηα

2
= Ke

Ki

cot
πη(1 − α)

2
. (37)

In general, equations (B.1) and (37) have different roots. Therefore, special radial solutions
of the corner problems were constructed in [5, 9].

We do not know of any other analytical results about the corner problems in the literature.
Let us now go back to the flow around the fracture. For definiteness, in this subsection

we consider the case ρ > 0. The poles of the integrand from (A.19) are complex solutions of
the number equation

sinh πω − ρ sinh π(1 − α)ω = 0. (38)

This equation is completely investigated in appendix B. The roots of (38) are simple and purely
imaginary. Therefore,

G(ω) = cosh ηω

sinh πω − ρ sinh π(1 − α)ω
, (39)

which appears in the integrand of (A.19) can be expressed as

G(ω) = 1

π

∞∑
k=0

χk(η)
ω

ω2 + γ 2
k

, (40)

where γk and χk(η) are given by (B.1) and (B.22), respectively.
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This result can be applied to study the asymptotic behaviour of the pressure and the
velocity near the angular points z = ±1. Application of (40) to (A.19) implies

u1(ξ, η) = 2

π

∞∑
k=0

χk(η)

∫ ∞

0
sin ωξ

ω

ω2 + γ 2
k

dω, (41)

where the integrals are given by∫ ∞

0

sin ωξ

ω
dω = π

2
,

∫ ∞

0

ω

ω2 + γ 2
k

sin ωξ dω = π

2
e−γkξ , k = 1, 2, . . . . (42)

Therefore, application of (B.22) yields

u1(ξ, η) = 1

1 − ρ(1 − α)
+ 2

∞∑
k=1

cos γkη e−γkξ

cos πγk − ρ(1 − α) cos π(1 − α)γk

, ξ > 0. (43)

Recall that u1(ξ, η) is an odd function of ξ and that γk � 0. Formula (43) represents the full
asymptotic expansion of u1(ξ, η) as ξ → +∞.

The asymptotic behaviour of pβ(x, y) for β = i, e is expressed by (35) near the angular
point x = 1, y = 0 which corresponds to ξ = +∞, η = 0. Using (35), (19) and the relation

Re e−γkw = cos ηγk e−γkξ (w = ξ + iη),

we obtain near the point x = 1, y = 0

pi(x, y) = 4

K + 1

∞∑
k=1

1

�′
k

Re

(
1 − z

1 + z

)γk

, (44)

where z = x + iy,

�′
k = cos πγk − ρ(1 − α) cos π(1 − α)γk. (45)

The constant term in (44) is omitted. It follows from (11) that the corresponding complex
potential ϕi(z) has the form

ϕi(z) = 2
∞∑

k=1

1

�′
k

(
1 − z

1 + z

)γk

. (46)

The second formula (6) in terms of ϕi(z) becomes

vi (x, y) = − 2K

K + 1
ϕ′

i (z), (47)

where the overbar denotes complex conjugation. The complex value is identified with a vector,
i.e., the real value of the right-hand side corresponds to ui(x, y), and its imaginary part to
vi(x, y), respectively. The first-order terms of (46) and (47) yield the asymptotic formula

vi (x, y) ∼ 22−γ1Kγ1

(K + 1)�′
1

(1 − z)γ1−1, z → 1. (48)

Similar straightforward estimations of the integral (A.20) are possible, but they are too
cumbersome. We will find first the complex potential ϕe(z) using (46) and (13), then the
pressure pe and the velocity ve. Introduce the auxiliary complex variable

ζ = 1 + z

1 − z
. (49)

One can consider (49) as the conformal automorphism of the upper half-plane H. Then, in
the ζ -plane, H ∩ Di and H ∩ De become the edges 0 < arg ζ < πα

2 and πα
2 < arg ζ < π ,
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respectively. The point z = 1 corresponds to the point ζ = ∞. The representation (46)
becomes (for brevity, the potentials are denoted by the same letter)

ϕi(ζ ) = 2
∞∑

k=1

1

�′
k

ζ−γk . (50)

The R-linear conjugation condition (13) as well as the symmetry conditions (15) keeps its
form under the conformal mapping (49) (see [8])

ϕe(ζ ) = ϕi(ζ ) − ρϕi(ζ ), arg ζ = πα

2
. (51)

Therefore, one can find ϕe(z) in the form

ϕe(ζ ) =
∞∑

k=1

Xkζ
−γk . (52)

Substitution of (50) and (52) into (51) yields

Xk = 2

�′
k

(1 − ρ eπ iαγk ), k = 1, 2, . . . . (53)

Then, (11), (52) and (53) yield the representation for pe(x, y) up to an additive constant

pe(x, y) = 2
∞∑

k=1

1

�′
k

Re

(
(e−π iγk − ρ e−π iγk(1−α))

(
z − 1

z + 1

)γk
)

. (54)

Here, we use the relation(
1 − z

1 + z

)γk

= e−π iγk

(
z − 1

z + 1

)γk

.

Using the first formula (6) written in the form

ve(x, y) = −ϕ′
e(z) (55)

and the principal part of (54), we obtain the following asymptotic formula:

ve(x, y) ∼ −21−γ1γ1

�′
1

(eπ iγ1 − ρ eπ iγ1(1−α))(z − 1)γ1−1, as z → 1. (56)

4. Flow perpendicular to the lens and general flow

The same methodology as in the previous section can be applied to the transversal flow
problem (13), (17) and (18), i.e., flow is in the xy-plane and ∇p is parallel to the y-axis.
However, we apply here a simpler method based on the reduction of the anti-symmetric
problem to a symmetric one.

Consider the complex potentials ϕ∗
β(z) (β = i, e) introduced in section 2 corresponding

to the flow perpendicular to the lens. They satisfy the R-linear problem

ϕ∗
e (t) = ϕ∗

i (t) − ρϕ∗
i (t), t ∈ �1, (57)

with conditions (17) and (18). Introduce the auxiliary complex potentials

φβ(z) = iϕ∗
β(z), z ∈ Dβ. (58)

It is easily seen that they satisfy the following problem:

φe(t) = φi(t) + ρφi(t), t ∈ �1, (59)
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φi(z) = φi(z), φe(z) = φe(z), (60)

φe(z) ∼ z, as z → ∞. (61)

The problem (59)–(61) differs from the symmetric problem (13), (15) and (16) only by the
sign of ρ. Therefore, in order to obtain formulae for pressure and velocity, we have to take
the symmetric solution from the previous section, to replace ρ by (−ρ) and to perform the
transformation inverse to (58). Let us note that by replacing ρ by −ρ, equation (38) is replaced
by

sinh πω + ρ sinh π(1 − α)ω = 0, (62)

which is also studied in appendix B.
Ultimately, we obtain

p∗
i (x, y) = 2

K + 1
u∗

1(ξ, η), (x, y) ∈ Di,

p∗
e (x, y) = u∗

2(ξ, η) +
2(π − η)

ξ 2 + (π − η)2
, (x, y) ∈ De,

(63)

where ξ and η are given by (33) and (34), respectively. Let us explain how to obtain u∗
1(ξ, η)

and u∗
2(ξ, η) from u1(ξ, η) and u2(ξ, η) given by (A.19) and (A.20), respectively. First, we

note that the complex potentials 	β(w) = φβ(z), where w and z are related by (19), also
satisfy the condition 	β(w) = 	β(w). The term from (33) which contains the variable ξ and
η generates an analytic function

sin ωw = cosh ωη sin ωξ + i sinh ωη cos ωξ, (64)

where w = ξ + iη. It follows from (58) that

Re 	∗
β(w) = Im	β(w). (65)

Therefore, in order to obtain u∗
1(ξ, η) from u1(ξ, η) according to (65), we have to replace

Re 	β(w) by Im 	β(w) and ρ by −ρ. Together with (64), this transformation yields

u∗
1(ξ, η) = 2

∫ +∞

0

sinh ωη cos ωξ

sinh πω + ρ sinh πω(1 − α)
dω, ξ � 0, 0 � η � πα

2
. (66)

Similar arguments yield

u∗
2(ξ, η) = 2

∫ +∞

0

(e−πω + ρ e−π(1−α)ω) sinh ω(π − η) cos ωξ

sinh πω + ρ sinh πω(1 − α)
dω,

πα

2
� η � π.

(67)

We now study the asymptotic behaviour of the solution near the point x = 1, y = 0 which
in polar coordinates corresponds to the point r = 0. For definiteness, we consider the case
ρ > 0. Then, up to an additive constant (compare with (44))

p∗
i (x, y) = 4

K + 1

∞∑
k=1

1

�′′
k

Im

(
1 − z

1 + z

)δk

, (68)

where ±iδk are the roots of equation (62),

�′′
k = cos πδ1 + ρ(1 − α) cos π(1 − α)δ1.

Along similar lines, it can be obtained that

p∗
e (x, y) = 2

∞∑
k=1

1

�′′
k

Im

(
(e−π iδk − ρ e−π iδk(1−α))

(
z − 1

z + 1

)δk

)
. (69)
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The velocity v∗(x, y) has the following asymptotic behaviour near z = 1 (compare with (48)):

v∗
i (x, y) ∼ −i

22−δ1Kδ1

(K + 1)�′′
1

(1 − z)δ1−1, (70)

v∗
e (x, y) ∼ −i

21−δ1δ1

�′′
1

(eπ iδ1 − ρ eπ iδ1(1−α))(z − 1)δ1−1. (71)

In contrast to the flow parallel to the lens, the velocities vβ are equal to zero at z = 1 because
of (B.5).

Now, consider the general case (9). Then,

p(x, y) = 2

K + 1
[p,1∞u1(ξ, η) + p,2∞u∗

1(ξ, η)], (x, y) ∈ Di, (72)

where u1(ξ, η) and u∗
1(ξ, η) have the forms (A.19) and (66), respectively; (x, y) and (ξ, η)

are related by (33) and (34). We also have

pe(x, y) = p,1∞u2(ξ, η) + p,2∞u∗
2(ξ, η), (x, y) ∈ De, (73)

where u2(ξ, η) and u∗
2(ξ, η) are calculated by (A.20) and (67), respectively.

In order to study the asymptotic behaviour near the point x = 1, y = 0, compare the
asymptotics (56) and (71). It follows from lemma 1 that 0 < γ1 < 1 < δ1. Hence, the main
asymptotic term of the velocity in the lens becomes

vi (x, y) ∼ p,1∞
22−γ1Kγ1

(K + 1)�′
1

(1 − z)γ1−1, (74)

if only p,1∞ �= 0. When the external flow is perpendicular to the lens (p,1∞ = 0), in
accordance with (70) and (72), we have

vi (r, θ) ∼ −p,2∞i
22−δ1Kδ1

(K + 1)�′′
1

(1 − z)δ1−1. (75)

5. Discussion and conclusion

For a check, let us compare the analytical solution to a numerical solution. This comparison
is best made for α = 1

2 since the two arcs meet with a right angle. Then, equation (B.1) is
easily solved. For positive ρ, we have

γ1 = 2

π
arccos

ρ

2
, γ2 = 4 − 2

π
arccos

ρ

2
, γ3 = γ1 + 4, γ4 = γ2 + 4, . . . , (76)

δ1 = 2 − 2

π
arccos

ρ

2
, δ2 = 2 +

2

π
arccos

ρ

2
, δ3 = δ1 + 4, δ4 = δ2 + 4, . . . . (77)

Consider an example with K = 12. Calculations were performed on a square grid by
a finite volume technique. The boundary conditions far from the lens are different since the
medium is spatially periodic. The width of the lens is about 20% of the size of the cell. The
cell was discretized into N2

c squares of permeabilities 1 and K. The x- and y-axes are parallel to
the diagonals of these squares; therefore, the angular points are well discretized since the two
arcs meet with a right angle. Computations of pβ(x, y) (β = i, e) are presented in figure 3,
where pi(x, y) and pe(x, y) are calculated by (44) and (54), respectively. They are seen to be
in excellent agreement when Nc is large enough.
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0.7 0.8 0.9 1 1.1 1.2
x

− 0.7

− 0.6

− 0.5

− 0.4

− 0.3

− 0.2

− 0.1

p(
x,

y
=

0)

Figure 3. Comparison of the exact formulae and of the numerical calculations along the x-axis for
flow parallel to the lens and K = 12. The points |x| � 1 are inside the lens. Data are for present
calculations (thick solid line); numerical calculations: Nc = 64 (•, broken line), 128 (◦, dashed
line), 256 (�, dotted line), 512 (�, thin solid line).

Let us summarize the results relative to the flow around a permeable lens immersed in an
infinite porous medium of different permeability.

First, consider K > 1. For flow parallel to the lens, the pressure is given by (35), (A.19)
and (A.20), where ξ and η are given by (33) and (34), respectively. The seepage velocity is
derived from pressure via formula (6). The singularity of the velocity near the angular point
of the lens x = 1, y = 0 is described by (48) and (56). It is worth noting that the velocity
has a power singularity at the angular points expressed by (z − 1)γ1 , where γ1 is the minimal
positive root of equation (B.1) satisfying inequality (B.3).

Second, consider K < 1. For flow parallel to the lens, the velocity vanishes at the
angular points. For flow perpendicular to the lens, the velocity has the singularity expressed
by (z − 1)γ1 .

Therefore, the occurrence of the singularities in the velocity components is exchanged
when the position of ρ relative to 1 is changed, i.e., when the lens is more or less permeable
than the surrounding porous medium.

Moreover, when the external flow is not parallel to the axes, the velocity has a singularity
of the form (z−1)γ1 for any value of K. Therefore, the two special cases discussed above when
the velocity has no any singularity at the angular points are very sensitive to the direction of
the external field.

Finally, the influence of these singularities on the dispersion of a solute has to be analysed.
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Appendix A

In this appendix, we solve the boundary value problem (28)–(31).
Introduce the Fourier transform on the variable ξ .

Uj(η) = Uj(ω, η) = 1√
2π

∫ +∞

−∞
uj (ξ, η) eiωξ dξ (j = 1, 2). (A.1)

Then, (28)–(31) become

U2

(πα

2

)
= (1 − ρ)U1

(πα

2

)
− sgn ωf (ω), (A.2)

U ′
2

(πα

2

)
= (1 + ρ)U ′

1

(πα

2

)
− ωf (ω), (A.3)

U ′
1(0) = 0, (A.4)

U ′
2(π) = 0, (A.5)

where sgn ω is the sign of ω. f (ω) is defined as

f (ω) = i
√

2π e−π(1− α
2 )|ω|. (A.6)

The Laplace equation

(uj )ξξ + (uj )ηη = 0 (A.7)

under the transformation (A.1) becomes

−ω2Uj + U ′′
j = 0. (A.8)

Then,

U1(η) = C1(ω) cosh ωη + E(ω) sinh ωη, 0 � η � πα

2
, (A.9)

U2(η) = C2(ω) cosh ω(π − η) + F(ω) sinh ω(π − η),
πα

2
� η � π. (A.10)

Using (A.4) and (A.5) imply that (A.9) and (A.10) take the form

U1(η) = C1(ω) cosh ωη, 0 � η � πα

2
, (A.11)

U2(η) = C2(ω) cosh ω(π − η),
πα

2
� η � π. (A.12)

Substitution of (A.11) and (A.12) into (A.2) and (A.3) yields the following algebraic equations
with respect to C1(ω) and C2(ω):

C1(ω)(1 − ρ) cosh
πα

2
ω − C2(ω) cosh π

(
1 − α

2

)
ω = sgn ωf (ω), (A.13)

C1(ω)(1 + ρ) sinh
πα

2
ω + C2(ω) sinh π

(
1 − α

2

)
ω = f (ω). (A.14)

One can find

C1(ω) = f (ω)

�(ω)

[
cosh π

(
1 − α

2

)
ω + sgn ω sinh π

(
1 − α

2

)
ω

]
, (A.15)

where

�(ω) = sinh πω − ρ sinh π(1 − α)ω. (A.16)
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The coefficient C2(ω) is expressed as

C2(ω) = f (ω)

�(ω)

[
(1 − ρ) cosh

πα

2
ω − (1 + ρ)sgn ω sinh

πα

2
ω

]
(A.17)

Now, substitute (A.15)–(A.17) into (A.11) and (A.12) and apply the inverse Fourier
transform to the resulting functions. First, consider (A.11)

u1(ξ, η) = 1√
2π

∫ +∞

−∞
C1(ω) cosh ωη e−iωξ dω, 0 � η � πα

2
. (A.18)

C1(ω) is seen to be an odd function. Then, (A.18) yields

u1(ξ, η) = 2
∫ +∞

0

cosh ωη sin ωξ

sinh πω − ρ sinh πω(1 − α)
dω, ξ � 0, 0 � η � πα

2
. (A.19)

It is convenient to consider (A.19) only for ξ � 0 assuming that u1(ξ, η) is an odd function
of ξ .

Similar arguments yield the formula

u2(ξ, η) = 2
∫ +∞

0

(e−πω − ρ e−π(1−α)ω) cosh ω(π − η) sin ωξ

sinh πω − ρ sinh πω(1 − α)
dω,

πα

2
� η � π. (A.20)

One can see that both integrands in (A.19) and (A.20) decay exponentially as ω tends to
infinity, since α < 1 and η < π . An exact asymptotic of uj (ξ, η) as ξ → ±∞ is derived in
section 3.3.

Appendix B

In this appendix, we investigate the asymptotic behaviour of the integral (A.19). The poles of
the integrand of (A.19) are complex solutions of the number equation (38). We shall first look
for properties of the purely imaginary roots ω = iη of equation (38).

Lemma 1. Let 0 < ρ < 1, 0 < α < 1. All real roots η of equation

sin πη − ρ sin π(1 − α)η = 0 (B.1)

are simple and can be arranged as follows: γ0 = 0,±γ1,±γ2, . . . , where 0 < γ1 < γ2 < · · · .
Moreover,

k − ν < γk < k + ν, k = 1, 2, . . . , (B.2)

where ν = 1
π

arcsin ρ. The root γ1 satisfies the inequality

1 − ν < γ1 < 1. (B.3)

Let −1 < ρ < 0, 0 < α < 1. All real roots η of equation (B.1) are simple and can be
arranged as follows: δ0 = 0,±δ1,±δ2, . . . , where 0 < δ1 < δ2 < · · ·. Moreover,

k − ν < δk < k + ν, k = 1, 2, . . . . (B.4)

The root δ1 satisfies the inequality

1 < δ1 < 1 + ν. (B.5)

Proof. For definiteness, we take 0 < ρ < 1. Equation (B.1) with positive roots is equivalent
to the following set of equations:

η = 1

π
arcsin[ρ sin π(1 − α)η] + 2m, (B.6)
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η = − 1

π
arcsin[ρ sin π(1 − α)η] + 2m − 1, m = 1, 2, . . . . (B.7)

For each fixed m, the method of successive approximations can be applied to (B.6) and (B.7),
since ∣∣∣∣ ∂

∂η

1

π
arcsin[ρ sin π(1 − α)η]

∣∣∣∣ � (1 − α)ρ < 1. (B.8)

In particular, equation (B.6) with m = 0 is omitted, because it has only a trivial solution
γ0 = 0. Therefore, each equation (B.6) and (B.7) has a unique solution. The root γk is
obtained from (B.6) if k = 2m and from (B.7) if k = 2m − 1.

Consider the root γ1 satisfying (B.7) for m = 1. We have

arcsin[ρ sin π(1 − α)η] > 0

and
1

π
|arcsin[ρ sin π(1 − α)η]| � ν <

1

2
, (B.9)

since ρ > 0, γ1 > 0 and α < 1. This yields (B.3). Along similar lines, relation (B.2) follows
from (B.6), (B.7) and the inequality (B.9).

Let us check that all roots of (B.1) are simple. If it is not true for some γk , differentiation
yields

cos πη − ρ(1 − α) cos π(1 − α)η = 0. (B.10)

Then, (B.1) and (B.10) imply

1 = ρ2[sin2 π(1 − α) + (1 − α)2 cos2 π(1 − α)η]. (B.11)

The right-hand side of (B.11) is less than ρ2 which is less than unity. Since this is contradictory,
the lemma is proved. �

Lemma 2. Let 0 < |ρ| < 1, 0 < α < 1. All complex roots of equation (38) are simple and
have the form ω = ±iγk (k = 0, 1, . . .), where γk are real roots of equation (B.1) for positive
ρ, and ω = ±iδk for negative ρ.

Proof. For definiteness, consider the case 0 < ρ < 1. First, recall Rouché’s theorem of
classical complex analysis. Take two functions f (z) and g(z) analytic in a simply connected
domain 
 = 
 ∪ ∂
. Let |f (z)| > |g(z)| for all z on ∂
. Then, f (z) and f (z) + g(z) have
the same number of roots in 
. We apply Rouché’s theorem to the functions

f (ω) = sinh πω

ω
and g(ω) = −ρ

sinh π(1 − α)ω

ω
(B.12)

in the rectangles 
k = {ω = ξ + iη ∈ C : −A < ξ < A, 0 < η < Bk}, where A is a
sufficiently large positive number; the sequence Bk ∈ (k, k + ν) is chosen in such a way that

|sin πBk| > ρ| sin π(1 − α)Bk|. (B.13)

Let us demonstrate that such a sequence Bk exists. Let γk and δk be the roots of the functions
sin πη − ρ sin π(1 − α)η and sin πη + ρ sin π(1 − α)η, respectively. For definiteness,
consider an irrational α. According to lemma 1, these roots are simple and lie in the segment
(k − ν, k + ν). Moreover, γk �= δk , since ρ �= 0 and α is irrational. Therefore, the segment
(k − ν, k + ν) is divided into three small segments by the points γk and δk . The function
F(η) = sin2 πη − ρ2 sin2 π(1 − α)η is positive for small η > 0, and it changes its sign at
η = γk and η = δk . For definiteness, let γk < δk . Then, F(η) is negative for η ∈ (γk, δk) and
positive for η ∈ (k − ν, γk) ∪ (δk, k + ν). Therefore, such a Bk ∈ (k, k + ν) exists such that
F(Bk) > 0. Therefore, (B.13) is fulfilled.
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We must now check that |f (ω)| > |g(ω)| on ∂
k . The boundary of 
k consists of four
segments. However, since f (ω) and g(ω) are even functions, it is sufficient to check the
inequality only for

(i) 0 � ξ � A, η = 0,
(ii) ξ = A, 0 � η � Bk ,

(iii) 0 � ξ � A, η = Bk .

(i) In order to prove that

sinh πξ > ρ sinh π(1 − α)ξ for 0 < ξ � A, (B.14)

write (B.14) in the form

ρ eπξ + (1 − ρ) eπξ + ρ e−π(1−α)ξ > ρ eπ(1−α)ξ + ρ e−πξ + (1 − ρ) e−πξ . (B.15)

The latter equality is fulfilled, because eπξ > eπ(1−α)ξ , eπξ > e−πξ and e−π(1−α)ξ > e−πξ

for ξ > 0. Therefore, (B.14) is true.
(ii) In order to prove that

|sinh π(A + iη)| > ρ| sinh π(1 − α)(A + iη)| for 0 � η < Bk, (B.16)

use the formula

|sinh(x + iy)|2 = sinh2 x cos2 y + cosh2 x sin2 y.

(B.16) implies

sinh2 πA cos2 πη + cosh2 πA sin2 πη > ρ2[sinh2 π(1 − α)A cos2 π(1 − α)η

+ cosh2 π(1 − α)A sin2 π(1 − α)η]. (B.17)

Using the relations cos2 y = 1 − sin2 y and sinh2 x = cosh2 x − 1, (B.17) is rewritten as

sinh2 πA + sin2 πη > ρ2(sinh2 π(1 − α)A

+ sin2 π(1 − α)η) for 0 � η < Bk. (B.18)

For sufficiently large A, since ρ < 1 and α < 1, we have

sinh2 πA > ρ2(sinh2 π(1 − α)A + 1), (B.19)

(B.19) implies (B.18) and hence (B.16).
(iii) In order to prove that

|sinh π(ξ + iBk)| > ρ| sinh π(1 − α)(ξ + iBk)| for 0 � ξ � A (B.20)

as in the previous case, (B.20) is reduced to

sinh2 πξ + sin2 πBk > ρ2(sinh2 π(1 − α)ξ + sin2 π(1 − α)Bk) for 0 � ξ � A.

The latter inequality follows from sinh πξ � sinh2 π(1 − α)ξ and (B.13).

Therefore, Rouché’s theorem can be applied. All roots of f (ω) in 
k have the form
ω = im (m = 1, 2, . . . , k), because sinh π(ξ + iη) = 0 if and only if sinh πξ = 0 and
sin πη = 0. Then, the function f (ω) + g(ω) also has k roots in 
k . Exactly k roots of
f (iη) + g(iη) are described in lemma 1. Hence, no other root of f (ω) + g(ω) can be found in

k . Finally, k is increased up to infinity.

This proves the lemma. �

Lemma 3. Let γk be the roots of equation (B.1). Then,

G(ω) = cosh ηω

sinh πω − ρ sinh π(1 − α)ω
=

∞∑
k=0

χk(η)
ω

ω2 + γ 2
k

, (B.21)
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where

χ0(η) = 1

π(1 − ρ(1 − α))
,

χk(η) = 2 cos ηγk

π [cos πγk − ρ(1 − α) cos π(1 − α)γk]
, k = 1, 2, . . . .

(B.22)

The series in (B.21) converges absolutely and uniformly for −∞ < ω < +∞.

Proof. In the complex plane, consider the representation of the meromorphic function
following from the Mittag–Leffler theorem [7]

G(ω) = 1

2

∞∑
k=0

χk(η)

(
1

ω − iγk

+
1

ω + iγk

)
. (B.23)

According to lemma 2, the function G(ω) for positive ρ has poles only at the points ω = ±iγk .
All these poles are of first order. Calculating the residue of G(ω) at ω = ±iγk , we obtain
(B.21) and (B.22).

In order to verify the absolute and uniform convergence of the series from (B.21), note
that γk ∼ k, as k → ∞ in accordance with lemma 1. Moreover, the denominators of χk(η)

are uniformly bounded, i.e.,

|cos πγk − ρ(1 − α) cos π(1 − α)γk| � c0 > 0, k = 0, 1, . . . . (B.24)

We prove (B.24) by contradiction. Assume the existence of a subsequence of the roots γkm

such that εm := cos πγkm
− ρ(1 − α) cos π(1 − α)γkm

tends to zero as m → ∞. Then,

cos2 πγkm
= ρ2(1 − α)2 cos2 π(1 − α)γkm

+ ε′
m, (B.25)

where ε′
m = εm

[
2ρ(1−α) cos π(1−α)γkm

+ εm

]
. ε′

m also tends to zero as m → ∞. It follows
from (B.1) that

sin2 πγkm
= ρ2 sin2 π(1 − α)γkm

. (B.26)

Addition of (B.25) and (B.26) yields the contradictory equality

1 = ρ2
[

sin2 π(1 − α)γkm
+ ρ2(1 − α)2 cos2 π(1 − α)γkm

]
+ ε′

m, (B.27)

since the right-hand side of (B.27) is less than ρ2 + ε′
m which is less than unity.

The lemma is proved. �
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